The ATP-Mg2+ binding site and cytoplasmic domain interactions of Na+,K+-ATPase investigated with Fe2+-catalyzed oxidative cleavage and molecular modeling.

نویسندگان

  • Guy Patchornik
  • Keith Munson
  • Rivka Goldshleger
  • Alla Shainskaya
  • George Sachs
  • Steven J D Karlish
چکیده

This work utilizes Fe(2+)-catalyzed cleavages and molecular modeling to obtain insight into conformations of cytoplasmic domains and ATP-Mg(2+) binding sites of Na(+),K(+)-ATPase. In E(1) conformations the ATP-Fe(2+) complex mediates specific cleavages at 712VNDS (P domain) and near 440VAGDA (N domain). In E(2)(K), ATP-Fe(2+) mediates cleavages near 212TGES (A domain), near 440VAGDA, and between residues 460-490 (N domain). Cleavages at high ATP-Fe(2+) concentrations do not support suggestions for two ATP sites. A new reagent, fluorescein-DTPA, has been synthesized. The fluorescein-DTPA-Fe(2+) complex mediates cleavages similar to those mediated by ATP-Fe(2+). The data suggest the existence of N to P domain interactions in E(1)Na, with bound ATP-Fe(2+) or fluorescein-DPTA-Fe(2+), A-N, and A-P interactions in E(2)(K), and provide testable constraints for model building. Molecular models based on the Ca(2+)-ATPase structure are consistent with the predictions. Specifically, high-affinity ATP-Mg(2+) binding in E(1) is explained with the N domain tilted ca. 80 degrees toward the P domain, by comparison with well-separated N and P domains in the Ca-ATPase crystal structure. With ATP-Mg(2+) docked, bound Mg(2+) is close to both D710 (in 710DGVNDS) and D443 (in 440VAGDASE). D710 is known to be crucial for Mg(2+) binding. The cleavage and modeling data imply that D443 could also be a candidate for Mg(2+) binding. Comparison of E(1).ATP,Mg(2+) and E(2) models suggests an explanation of the high or low ATP affinities, respectively. We propose a scheme of ATP-Mg(2+) and Mg(2+) binding and N, P, and A domain interactions in the different conformations of the catalytic cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and mechanism of Na,K-ATPase: functional sites and their interactions.

The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed...

متن کامل

Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the...

متن کامل

Selective Fe2+-catalyzed oxidative cleavage of gastric H+,K+-ATPase: implications for the energy transduction mechanism of P-type cation pumps.

In the presence of ascorbate/H(2)O(2), Fe(2+) ions or the ATP-Fe(2+) complex catalyze selective cleavage of the alpha subunit of gastric H(+),K(+)-ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E(1) and E(2) conformational states are essentially identical to those described previously for renal Na(+),K(+)-ATPase. The cleavage pattern of H(+),K...

متن کامل

Selective Fe -catalyzed Oxidative Cleavage of Gastric H ,K -ATPase IMPLICATIONS FOR THE ENERGY TRANSDUCTION MECHANISM OF P-TYPE CATION PUMPS*

In the presence of ascorbate/H2O2, Fe 2 ions or the ATP-Fe complex catalyze selective cleavage of the subunit of gastric H ,K -ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E1 and E2 conformational states are essentially identical to those described previously for renal Na ,K -ATPase. The cleavage pattern of H ,K ATPase by Fe ions is consiste...

متن کامل

Modulatory and catalytic modes of ATP binding by the calcium pump.

We present crystal structures of the calcium-free E2 state of the sarcoplasmic reticulum Ca2+ -ATPase, stabilized by the inhibitor thapsigargin and the ATP analog AMPPCP. The structures allow us to describe the ATP binding site in a modulatory mode uncoupled from the Asp351 phosphorylation site. The Glu439 side chain interacts with AMPPCP via an Mg2+ ion in accordance with previous Fe2+ -cleava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 41 39  شماره 

صفحات  -

تاریخ انتشار 2002